Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1032202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466671

RESUMO

Bacterial extracellular membrane vesicles (MV) are potent mediators of microbe-host signals, and they are not only important in host-pathogen interactions but also for the interactions between mutualistic bacteria and their hosts. Studies of MV derived from probiotics could enhance the understanding of these universal signal entities, and here we have studied MV derived from Limosilactobacillus reuteri DSM 17938 and BG-R46. The production of MV increased with cultivation time and after oxygen stress. Mass spectrometry-based proteomics analyses revealed that the MV carried a large number of bacterial cell surface proteins, several predicted to be involved in host-bacteria interactions. A 5'-nucleotidase, which catalyze the conversion of AMP into the signal molecule adenosine, was one of these and analysis of enzymatic activity showed that L. reuteri BG-R46 derived MV exhibited the highest activity. We also detected the TLR2 activator lipoteichoic acid on the MV. In models for host interactions, we first observed that L. reuteri MV were internalized by Caco-2/HT29-MTX epithelial cells, and in a dose-dependent manner decreased the leakage caused by enterotoxigenic Escherichia coli by up to 65%. Furthermore, the MV upregulated IL-1ß and IL-6 from peripheral blood mononuclear cells (PBMC), but also dampened IFN-γ and TNF-α responses in PBMC challenged with Staphylococcus aureus. Finally, we showed that MV from the L. reuteri strains have an antagonistic effect on the pain receptor transient receptor potential vanilloid 1 in a model with primary dorsal root ganglion cells from rats. In summary, we have shown that these mobile nanometer scale MV reproduce several biological effects of L. reuteri cells and that the production parameters and selection of strain have an impact on the activity of the MV. This could potentially provide key information for development of innovative and more efficient probiotic products.

2.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882892

RESUMO

The role of the nucleic acids in prion aggregation/disaggregation is becoming more and more evident. Here, using HET-s prion from fungi Podospora anserina (P. anserina) as a model system, we studied the role of RNA, particularly of different domains of the ribosomal RNA (rRNA), in its aggregation process. Our results using Rayleigh light scattering, Thioflavin T (ThT) binding, transmission electron microscopy (TEM) and cross-seeding assay show that rRNA, in particular the domain V of the major rRNA from the large subunit of the ribosome, substantially prevents insoluble amyloid and amorphous aggregation of the HET-s prion in a concentration-dependent manner. Instead, it facilitates the formation of the soluble oligomeric "seeds", which are capable of promoting de novo HET-s aggregation. The sites of interactions of the HET-s prion protein on domain V rRNA were identified by primer extension analysis followed by UV-crosslinking, which overlap with the sites previously identified for the protein-folding activity of the ribosome (PFAR). This study clarifies a missing link between the rRNA-based PFAR and the mode of propagation of the fungal prions.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Podospora/metabolismo , Multimerização Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Fúngicas/genética , Mutação , Podospora/genética , Conformação Proteica
3.
Sci Rep ; 9(1): 17109, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745234

RESUMO

Secreted factors derived from Lactobacillus are able to dampen pro-inflammatory cytokine responses. Still, the nature of these components and the underlying mechanisms remain elusive. Here, we aimed to identify the components and the mechanism involved in the Lactobacillus-mediated modulation of immune cell activation. PBMC were stimulated in the presence of the cell free supernatants (CFS) of cultured Lactobacillus rhamnosus GG and Lactobacillus reuteri DSM 17938, followed by evaluation of cytokine responses. We show that lactobacilli-CFS effectively dampen induced IFN-γ and IL-17A responses from T- and NK cells in a monocyte dependent manner by a soluble factor. A proteomic array analysis highlighted Lactobacillus-induced IL-1 receptor antagonist (ra) as a potential candidate responsible for the IFN-γ dampening activity. Indeed, addition of recombinant IL-1ra to stimulated PBMC resulted in reduced IFN-γ production. Further characterization of the lactobacilli-CFS revealed the presence of extracellular membrane vesicles with a similar immune regulatory activity to that observed with the lactobacilli-CFS. In conclusion, we have shown that lactobacilli produce extracellular MVs, which are able to dampen pro-inflammatory cytokine responses in a monocyte-dependent manner.


Assuntos
Vesículas Extracelulares/imunologia , Interferon gama/farmacologia , Lactobacillus/fisiologia , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , Adolescente , Adulto , Idoso , Citocinas/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Interleucina-17/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteoma/análise , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
4.
ACS Chem Neurosci ; 5(10): 1075-82, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25244284

RESUMO

Guanabenz (GA) is an orally active α2-adrenergic agonist that has been used for many years for the treatment of hypertension. We recently described that GA is also active against both yeast and mammalian prions in an α2-adrenergic receptor-independent manner. These data suggest that this side-activity of GA could be explored for the treatment of prion-based diseases and other amyloid-based disorders. In this perspective, the potent antihypertensive activity of GA happens to be an annoying side-effect that could limit its use. In order to get rid of GA agonist activity at α2-adrenergic receptors, we performed a structure-activity relationship study around GA based on changes of the chlorine positions on the benzene moiety and then on the modifications of the guanidine group. Hence, we identified the two derivatives 6 and 7 that still possess a potent antiprion activity but were totally devoid of any agonist activity at α2-adrenergic receptors. Similarly to GA, 6 and 7 were also able to inhibit the protein folding activity of the ribosome (PFAR) which has been suggested to be involved in prion appearance/maintenance. Therefore, these two GA derivatives are worth being considered as drug candidates.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Guanabenzo/análogos & derivados , Guanabenzo/farmacologia , Fármacos Neuroprotetores/farmacologia , Príons/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/química , Animais , Células CHO , Bovinos , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Cricetulus , Escherichia coli , Guanabenzo/química , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estrutura Molecular , Fármacos Neuroprotetores/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/fisiopatologia , Dobramento de Proteína/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Relação Estrutura-Atividade , Técnicas de Cultura de Tecidos , Leveduras
5.
Biochimie ; 97: 194-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184272

RESUMO

6-Aminophenanthridine (6AP), a plant alkaloid possessing antiprion activity, inhibits ribosomal RNA dependent protein folding activity of the ribosome (referred as PFAR). We have compared 6AP and its three derivatives 6AP8Cl, 6AP8CF3 and 6APi for their activity in inhibition of PFAR. Since PFAR inhibition requires 6AP and its derivatives to bind to the ribosomal RNA (rRNA), we have measured the binding affinity of these molecules to domain V of 23S rRNA using fluorescence spectroscopy. Our results show that similar to the antiprion activity, both the inhibition of PFAR and the affinity towards rRNA follow the order 6AP8CF3 > 6AP8Cl > 6AP, while 6APi is totally inactive. To have a molecular insight for the difference in activity despite similarities in structure, we have calculated the nucleus independent chemical shift using first principles density functional theory. The result suggests that the deviation of planarity in 6APi and steric hindrance from its bulky side chain are the probable reasons which prevent it from interacting with rRNA. Finally, we suggest a probable mode of action of 6AP, 6AP8CF3 and 6AP8Cl towards rRNA.


Assuntos
Fenantridinas/química , Príons/química , RNA Ribossômico 23S/química , Ribossomos/química , Escherichia coli/química , Escherichia coli/genética , Dobramento de Proteína , Teoria Quântica , Espectrometria de Fluorescência , Relação Estrutura-Atividade
6.
PLoS One ; 8(8): e72112, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977222

RESUMO

Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI (+) ] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo in a transgenic mouse model for prion diseases. In order to facilitate structure-activity relationship studies, we conducted a new synthetic pathway which provides a more efficient means of producing new IQ chemical derivatives, the activity of which was tested against both yeast and mammalian prions. The comparable antiprion activity of IQ and its chemical derivatives in the above life forms further emphasizes the conservation of prion controlling mechanisms throughout evolution. Interestingly, this study also demonstrated that the antiprion activity of IQ and IQ-derived compounds is independent from their ability to stimulate TLRs. Furthermore, we found that IQ and its active chemical derivatives inhibit the protein folding activity of the ribosome (PFAR) in vitro.


Assuntos
Aminoquinolinas/farmacologia , Glutationa Peroxidase/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Doenças Priônicas/tratamento farmacológico , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoquinolinas/síntese química , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Guanosina/análogos & derivados , Guanosina/farmacologia , Humanos , Imidazóis/farmacologia , Imiquimode , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/metabolismo
7.
J Biol Chem ; 288(26): 19081-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673663

RESUMO

Domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active center for the protein folding activity of the ribosome (PFAR). Using in vitro transcribed domain V rRNAs from Escherichia coli and Saccharomyces cerevisiae as the folding modulators and human carbonic anhydrase as a model protein, we demonstrate that PFAR is conserved from prokaryotes to eukaryotes. It was shown previously that 6-aminophenanthridine (6AP), an antiprion compound, inhibits PFAR. Here, using UV cross-linking followed by primer extension, we show that the protein substrates and 6AP interact with a common set of nucleotides on domain V of 23S rRNA. Mutations at the interaction sites decreased PFAR and resulted in loss or change of the binding pattern for both the protein substrates and 6AP. Moreover, kinetic analysis of human carbonic anhydrase refolding showed that 6AP decreased the yield of the refolded protein but did not affect the rate of refolding. Thus, we conclude that 6AP competitively occludes the protein substrates from binding to rRNA and thereby inhibits PFAR. Finally, we propose a scheme clarifying the mechanism by which 6AP inhibits PFAR.


Assuntos
Fenantridinas/farmacologia , Príons/química , Dobramento de Proteína/efeitos dos fármacos , Ribossomos/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Anidrases Carbônicas/química , Escherichia coli/metabolismo , Humanos , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutagênese , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico/química , Homologia de Sequência de Aminoácidos
8.
Biochimie ; 93(6): 1047-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21396977

RESUMO

The ribosome, the protein synthesis machinery of the cell, has also been implicated in protein folding. This activity resides within the domain V of the main RNA component of the large subunit of the ribosome. It has been shown that two antiprion drugs 6-aminophenanthridine (6AP) and Guanabenz (GA) bind to the ribosomal RNA and inhibit specifically the protein folding activity of the ribosome. Here, we have characterized with biochemical experiments, the mode of inhibition of these two drugs using ribosomes or ribosomal components active in protein folding (referred to as 'ribosomal folding modulators' or RFMs) from both bacteria Escherichia coli and yeast Saccharomyces cerevisiae, and human carbonic anhydrase (HCA) as a sample protein. Our results indicate that 6AP and GA inhibit the protein folding activity of the ribosome by competition with the unfolded protein for binding to the ribosome. As a result, the yield of the refolded protein decreases, but the rate of its refolding remains unaffected. Further, 6AP- and GA mediated inhibition of RFM mediated refolding can be reversed by the addition of RFMs in excess. We also demonstrate with delayed addition of the ribosome and the antiprion drugs that there is a short time-span in the range of seconds within which the ribosome interacts with the unfolded protein. Thus we conclude that the protein folding activity of the ribosome is conserved from bacteria to eukaryotes and most likely the substrate for RFMs is an early refolding state of the target protein.


Assuntos
Anidrases Carbônicas/química , Proteínas de Escherichia coli/química , Guanabenzo/química , Fenantridinas/química , Príons/antagonistas & inibidores , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Humanos , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...